Система охлаждения двигателя
Наши партнеры:
Корзина пуста

Система охлаждения двигателя

16.05.2010

Описание конструкции

Система охлаждения поддерживает эффективную рабочую температуру двигателя. Приблизительно одна третья часть тепла, создаваемого при сгорании, отводится системой охлаждения. В подавляющем большинстве случаев для охлаждения автомобильных двигателей используется жидкостное охлаждение.

Большинство двигателей охлаждается постоянным потоком охлаждающей жидкости, проходящей через блок цилиндров и головки цилиндров. Система охлаждения снимает избыточное тепло, генерируемое при сгорании, и поддерживает температуру двигателя на наиболее эффективном уровне. Если система охлаждения дает сбой, двигатель может перегреться и может быть поврежден. Слишком низкая рабочая температура в результате может привести к неполному сгоранию и повышенному расходу топлива.
 
Охлаждающая жидкость

Каналы для охлаждающей жидкости отлиты в блоке цилиндров и головке цилиндров. По этим каналам охлаждающая жидкость обходит цилиндры и камеры сгорания. Охлаждающая жидкость забирает тепло и отводит его от этих элементов.

В ранних двигателях в качестве охлаждающей жидкости использовалась чистая вода. Сегодня в большинстве двигателей используется охлаждающая жидкость на основе этиленгликоля, смешанная с водой. Охлаждающая жидкость с этиленгликолем уменьшает температуру замерзания воды, поднимает температуру кипения воды, способствует смазке водяного насоса и предотвращает коррозию двигателя.

В некоторых автомобилях используется охлаждающая жидкость, созданная по Технологии использования органической кислоты ОАТ). Охлаждающая жидкость ОАТ характеризуется увеличенным сроком службы охлаждающей жидкости, уменьшая обслуживание системы охлаждения. Охлаждающая жидкость ОАТ имеет оранжевый цвет, чтобы отличить ее от других охлаждающих жидкостей, и имеет специальные присадки, позволяющие смазывать систему охлаждения и защищать ее от коррозии. Охлаждающая жидкость ОАТ не совместима с другими охлаждающими жидкостями.

Работа

При запуске холодного двигателя насос охлаждающей жидкости прогоняет охлаждающую жидкость только по каналам головки цилиндров и блока цилиндров, быстро поднимая температуру двигателя. Часть охлаждающей жидкости может быть использована системой отопления, которая обогревает салон автомобиля.

Когда создается достаточно тепла для открывания термостата, водяной насос "гонит" охлаждающую жидкость через весь двигатель и в радиатор. Горячая охлаждающая жидкость течет из верхнего бака радиатора в нижний бак радиатора. Холодный воздух, обтекающий пластины (ребра) радиатора, отбирает тепло у охлаждающей жидкости. Из нижнего бака охлаждающая жидкость течет через нижний шланг радиатора к впускному порту насоса охлаждающей жидкости. Насос охлаждающей жидкости прокачивает охлаждающую жидкость через выпускное отверстие насоса в канал охлаждающей жидкости в блоке цилиндров. Охлаждающая жидкость течет из канала блока цилиндров в канал головки цилиндров, таким образом замыкая контур.

Насос охлаждающей жидкости

Насос охлаждающей жидкости отвечает за циркуляцию охлаждающей жидкости в системе охлаждения. Большинство насосов охлаждающей жидкости - это центробежные насосы или объемные насосы, работающие с проскальзыванием. Вся охлаждающая жидкость, которая входит в насос, не обязательно должна выйти из насоса. Эта конструкция отличается от масляного насоса (объемный насос без проскальзывания), в котором, все масло, которое входит в насос, выходит из него.

Центробежный насос

Насосы охлаждающей жидкости обычно являются простыми центробежными насосами. Насос охлаждающей жидкости имеет корпус насоса, который удерживает лопастное колесо. Лопастное колесо вращается на вале, который подсоединен к приводному шкиву.

Центробежный насос работает по центробежному принципу. Центробежное действие - это тенденция вращающегося груза отжиматься в направлении наружу. Охлаждающая жидкость течет через впускной порт насоса и входит в центр лопастного колеса. По мере того, как лопастное колесо вращается, оно "отбрасывает" охлаждающую жидкость к краям лопастного колеса. Охлаждающая жидкость улавливается корпусом насоса и подается в выпускное отверстие насоса.

Термостат

Термостат ограничивает расход охлаждающей жидкости в системе до тех пор, пока двигатель не достигнет своей рабочей температуры. Двигатель быстро прогревается, благодаря чему снижается потребление топлива и уменьшается токсичность выхлопа. Быстрый прогрев также уменьшает прорыв газов (за счет действия поршней) из камеры сгорания в картер двигателя.

В термостате содержится термочувствительный парафиновый наполнитель. Когда двигатель холодный, парафин остается твердым и пружина удерживает клапан закрытым. Когда охлаждающая жидкость нагревается, парафин переходит в жидкую форму и расширяется. При расширении корпус клапана толкается вниз, что приводит к открыванию доступа охлаждающей жидкости к радиатору.

Для обеспечения выпуска воздуха из системы охлаждения многие термостаты имеют специальный клапан (в виде штифта со шляпкой), расположенный около верхней части двигателя или в самом термостате или в корпусе термостата. Когда в системе охлаждения имеется воздух, более тяжелый конец штифта клапана опускается вниз, позволяя вытекать воздуху. Когда двигатель работает, давление, создаваемое водяным насосом подталкивает штифт клапана к седлу. Закрытый клапан предотвращает прохождение охлаждающей жидкости к радиатору до тех пор, пока термостат не откроется.

Вентилятор охлаждения

Вентилятор радиатора прогоняет холодный наружный воздух над поверхностью радиатора, чтобы забрать тепло от охлаждающей жидкости. Обеспечивается более быстрая теплопередача, особенно в режиме холостого хода. Большинство автомобилей, оснащенных системой кондиционирования воздуха, обычно имеют дополнительный вентилятор для более эффективного охлаждения. Большинство вентиляторов имеют четыре или большее количество лопастей, что позволяет увеличить их охлаждающую способность. Вентилятор может быть закрыт кожухом, который позволяет концентрировать поток воздуха.

Привод вентилятора охлаждения

Существует несколько различных типов привода вентилятора, включая электрический, вязкостный, гидравлический и механический. В некоторых автомобилях может использоваться комбинация из двух различных типов привода вентилятора. Некоторые вентиляторы приводятся в движение электродвигателем, который включает и выключает вентилятор в зависимости от температуры охлаждающей жидкости двигателя. Когда охлаждающая жидкость достигает предварительно заданной температуры, термопереключатель (датчик температуры охлаждающей жидкости двигателя) активизирует электрическое реле, которое включает электродвигатель вентилятора. Когда температура охлаждающей жидкости падает, термопереключатель выключает электродвигатель вентилятора. Другие вентиляторы управляются модулем управления на базе микропроцессора. Датчики посылают информацию о температуре охлаждающей жидкости двигателя к модулю, который использует ее, чтобы определить, должен ли вентилятор охлаждающей жидкости двигателя быть включен или выключен.

В гидравлическом приводе для привода вентилятора используется давление масла.

В механическом приводе вентилятора для приведения вентилятора в движение используется шкив и ремень. Большинство вентиляторов с механическим приводом использует привод с муфтой, которая позволяет вентилятору вращаться с более низкой частотой вращения, когда температура более низкая. Если бы вентилятор постоянно вращался с частотой вращения, равной частоте вращения двигателя, вентилятор при высокой частоте вращения работал бы очень шумно и расходовал мощность двигателя.

Один из наиболее распространенных типов муфт вентилятора - вязкостная муфта. Вязкостная муфта - это гидравлическая муфта.

Степенью зацепления муфты управляет биметаллический термостат. Биметаллический термостат - это пружина, изготовленная из двух различных металлов. Пружина расширяется при более высокой температуре и сжимается при более низкой температуре. Термостат подсоединяется к клапану, который управляет количеством жидкости, требуемой для зацепления муфты. Термостат реагирует на температуру воздуха, проходящего через радиатор. Если температура воздуха низкая, движение жидкости в муфте ограничивается. Зацепление или небольшое или полностью отсутствует, а вентилятор вращается очень медленно или вообще не вращается. При более высокой температуре, количество жидкости, работающей в муфте, увеличивается, обеспечивая более плотную связь и более высокую скорость вентилятора.

Расширительный бачок

Обычно используются два типа расширительных бачков: обычный бачок (работающий без давления) и бачок, работающий под давлением.

Когда охлаждающая жидкость становится горячей, она расширяется. Расширительный бачок, работающий без давления, принимает избыточную охлаждающую жидкость, вытесненную из радиатора. Когда двигатель охлаждается, охлаждающая жидкость из бачка снова поступает в систему охлаждения. Это сохраняет систему охлаждения постоянно заполненной, увеличивая ее эффективность.

Уровень охлаждающей жидкости подлежит проверке, а охлаждающая жидкость добавляется в радиатор. Бачок посредством шланга соединяется с заливной горловиной радиатора. Когда температура двигателя поднимается, герметичная крышка при необходимости разрешает расширяющейся охлаждающей жидкости перетекать из радиатора в бачок. Когда двигатель останавливается, температура охлаждающей жидкости падает и охлаждающая жидкость уменьшается в объеме. В системе охлаждения возникает частичный вакуум, вытягивающий охлаждающую жидкость из бачка обратно в систему охлаждения. Бачок имеет переливной трубопровод, который позволяет охлаждающей жидкости вытекать в том случае, если переполняется система охлаждения или перегревается двигатель.

Расширительный бачок, работающий под давлением

Расширительный бачок, работающий под давлением, по принципу действия аналогичен обычному расширительному бачку. Однако, бачок, герметизируется подобно радиатору, а герметичная крышка располагается непосредственно на расширительном бачке, а не на радиаторе. Система охлаждения заправляется через отверстие для герметичной крышки, расположенное на расширительном бачке. При нормальной работе двигателя расширительный бачок обеспечивает расширение охлаждающей жидкости. Переливной трубопровод обеспечивает выпуск избыточной охлаждающей жидкости в том случае, если переполняется система охлаждения или перегревается двигатель. Расширительный бачок обеспечивает отделение воздуха при работе двигателя. Он служит для пополнения системы охлаждающей жидкостью.

Герметичная крышка

Герметичная крышка поддерживает давление в системе, которое увеличивает температуру кипения охлаждающей жидкости. Кроме того, герметичная крышка позволяет сбрасывать избыточное давление в системе.

Температура кипения жидкости растет с ростом давления, под которым она находится. Например, вода на уровне моря кипит приблизительно при 100 °С (212 °F). Вода в типичной герметичной системе охлаждения кипит при температуре более 121 °С (250 °F). Герметичная система охлаждения эффективно поднимает рабочую температуру двигателя. Увеличение давления в системе охлаждения поднимает температуру кипения охлаждающей жидкости, чтобы обеспечить необходимую разницу между рабочей температурой двигателя и температурой кипения охлаждающей жидкости.

Герметичная крышка устанавливается или на заливной горловине радиатора или на расширительном бачке. Герметичная крышка имеет нагнетательный клапан и вакуумный клапан. Оба клапана подпружинены, чтобы оставаться закрытыми, когда система находится в пределах рабочего диапазона.

Если давление в системе охлаждения превышает установленное предельное значение, открывается предохранительный клапан, что позволяет избежать разрыва радиатора или шлангов. После этого пар и охлаждающая жидкость могут вытекать через шланг бачка(подсоединенный к заливной горловине) в бак радиатора или из переливного трубопровода, если автомобиль оснащается расширительным бачком, работающим под давлением.

Когда двигатель выключается, пар в системе снова конденсируется в жидкую форму, создавая вакуум в системе. Вакуумный клапан на герметичной крышке открывается, позволяя охлаждающей жидкости из бачка течь назад в радиатор по шлангу, идущему от бачка к радиатору. Без вакуумного клапана баки радиатора и шланги могли бы разрушаться.

Герметичная крышка предохраняет систему охлаждения от возникновения протечек вследствие избыточного давления или вакуума. Чтобы крышка работала правильно, вся система охлаждения должна быть герметичной.

Снятие крышки радиатора при работающем двигателе или когда двигатель и радиатор находятся в горячем состоянии, опасно. Охлаждающая жидкость и пар могут вытечь и привести к серьезным травматическим последствиям. Перед снятием крышки выключите двигатель и подождите до тех пор, пока он не остынет.

Радиатор


Радиатор передает тепло от охлаждающей жидкости к наружному воздуху. Сердцевина радиатора представляет собой комбинацию труб и пластин. По трубам протекает охлаждающая жидкость, а пластины увеличивают эффективную площадь поверхности радиатора, подвергаемую обдуву воздухом. Увеличенная площадь поверхности позволяет воздуху уносить большее количество тепла, уменьшая температуру охлаждающей жидкости. Радиаторы по конструкции бывают или поперечнопоточными или с нисходящим потоком.

Поперечный поток

Обычно используется поперечнопоточный радиатор. В поперечнопоточном радиаторе баки располагаются сбоку от сердцевины, и поэтому охлаждающая жидкость протекает по трубкам от одной стороны к другой.

Нисходящий поток

Радиатор с нисходящим потоком имеет верхний и нижний баки. Баки соединяются трубками. Охлаждающая жидкость течет из верхнего бака вниз через сердцевину и далее в нижний бак. Охлаждение происходит, когда жидкость проходит через сердцевину радиатора.

Если автомобиль имеет автоматическую коробку передач, радиатор может иметь отдельный охладитель для трансмиссионной жидкости, встроенный в один из баков.

автозапчасти в москве

Комментарии

Пока нет комментариев

Написать комментарий