Система воздухозабора
Наши партнеры:
Корзина пуста

Система воздухозабора

16.05.2010

Система воздухозабора

Впускной коллектор

Система воздухозабора предназначается для очищения впускаемого воздуха и подачи воздушно-топливной смеси к цилиндрам.

Основные элементы системы воздухозабора - это:

•    Воздуховоды
•    Резонатор воздухозабора
•    Воздушный фильтр в сборе
•    Впускной коллектор

Резонаторы могут использоваться для уменьшения уровня шума при воздухозаборе. Резонаторы воздухозабора могут быть как отдельными элементами, так и частью корпуса блока воздухозабора (например, конический воздушный фильтр). Кроме того, между воздушным фильтром в сборе и впускным коллектором располагаются датчик массового расхода воздуха и корпус дроссельной заслонки, которые являются и частью системы впрыскивания топлива.

Воздушный фильтр и элементы впуска

В воздушном фильтре в сборе располагается сменный фильтрующий элемент. Фильтрующий элемент задерживает любые частицы грязи, пыли или других загрязнений, проникающих в систему воздухозабора. Впускной коллектор направляет впускаемый воздух в цилиндры. Впускные коллекторы изготавливаются из алюминиевого сплава или пластмассовых композиционных материалов. Для обеспечения хорошего питания цилиндров впускные коллекторы должны иметь очень гладкую внутреннюю поверхность, оказывающую минимальное сопротивление входящим газам. Форма впускного коллектора может вызывать завихрение воздушного потока на пути в камеру сгорания, что обеспечивает более эффективное сгорание. Если порты, направленные к отдельным цилиндрам, имеют одинаковую длину и диаметр, все цилиндры при впуске будут находиться в одинаковых условиях, что ведет к равномерности питания цилиндров.

В фазе прогрева часть топлива конденсируется на внутренних стенках впускного коллектора. Для минимизации этих потерь на конденсацию впускные коллекторы часто оснащаются предварительным подогревателем. Системы впуска должны быть абсолютно герметичны относительно внешней среды. Неучтенный воздух, попавший в систему в результате протечек, "сбивает" работу системы управления двигателем и приводит к неравномерности работы двигателя, особенно в режиме холостого хода. За информацией по системе управления двигателем обратитесь к публикации "Работа двигателя и его систем". Вакуум, образующийся во впускном коллекторе, может использоваться для различных целей. Посредством вакуумных диафрагменных блоков могут приводиться в действие вакуумные усилители тормозов и системы с автоматической воздушной заслонкой. Для этих различных функций на впускном коллекторе предусмотрены соответствующие соединительные элементы.

Каналы впускного коллектора

Длина и диаметр впускных каналов впускного коллектора также оказывает влияние на объемную эффективность. При низкой частоте вращения коленчатого вала двигателя более длинные и более узкие впускные каналы создают более высокую объемную эффективность. При высокой частоте вращения коленчатого вала двигателя более эффективны более короткие и более широкие впускные каналы. В более современных двигателях для увеличения объемной эффективности используются такие новшества, как увеличение количества клапанов (многоклапанные двигатели) и регулируемые системы впуска.

Регулируемые системы впуска

Т.к. длина и диаметр впускных каналов влияют на динамические характеристики, эффективность и токсичность отработавших газов, в некоторых двигателях используются системы впуска с каналами переменной длины (регулируемые системы). В этих системах используются и длинные и короткие впускные каналы. При более низкой частоте вращения коленчатого вала двигателя для обеспечения наилучших динамических характеристик воздух проходит по длинным каналам. При определенной частоте вращения коленчатого вала двигателя открывается клапан, позволяющий воздуху проходить также и по коротким каналам, что способствует обеспечению максимальной мощности при высокой частоте вращения коленчатого вала двигателя. Эти подсистемы впуска используются для увеличения расхода воздуха, когда требуется увеличить крутящий момент и мощность.

Имеются два основных типа конструкции впускного коллектора с каналами переменной длины:

•    Система управления каналами впускного коллектора (IMRC)
•    Клапан настройки впускного коллектора (IMT)

Система управления каналами впускного коллектора (IMRC)

Впускной коллектор имеет по два впускных канала на цилиндр, питающих каждый из впускных портов в головках цилиндров.

Блоки IMRC располагаются между впускным коллектором и головками цилиндров, обеспечивая по два воздушных канала для каждого цилиндра. Блоки IMRC фактически представляют собой нижний коллектор, и таким образом образуется двухсекционный впускной коллектор. Один воздушный канал всегда открыт, а другой канал переключается из закрытого положения в открытое посредством клапана.

Ниже определенного значения частоты вращения, обычно 3 000 об/мин, клапан закрыт, что улучшает динамические характеристики двигателя при низкой частоте вращения и холодном двигателе. При частоте вращения выше этого значения клапан открывается, что улучшает динамические характеристики двигателя при высокой частоте вращения. Клапан открывается и закрывается исполнительным устройством IMRC. Большинство конструкций исполнительного устройства имеют электрический привод. Некоторые исполнительные устройства имеют вакуумный привод. Исполнительное устройство IMRC управляется системой управления двигателем. За информацией по системе управления двигателем обратитесь к публикации "Работа двигателя и его систем".

Клапан настройки впускного коллектора (IMT)

Клапан IMT - это электрическое исполнительное устройство, управляющее клапаном или заслонкой, установленными прямо на впускном коллекторе. При частоте вращения коленчатого вала ниже определенного значения клапан IMT закрыт. Выше определенной частоты вращения коленчатого вала, клапан IMT открывается, разрешая большему объему проходить в цилиндры, чтобы улучшить динамические характеристики двигателя при высокой частоте вращения. Клапан IMT управляется системой управления двигателем. За информацией по системе управления двигателем обратитесь к публикации "Работа двигателя и его систем".

Принудительный наддув воздуха

Большинство автомобильных двигателей всасывают воздушно-топливную смесь под воздействием вакуума, создаваемого ходом поршня вниз, и поэтому они называются двигателями с прямым забором воздуха. Двигатели с прямым забором воздуха для подачи воздуха к цилиндру используют атмосферное давление воздуха.

Мощность двигателя впрямую связана с его объемной эффективностью. Двигатель с прямым забором воздуха обычно имеет объемную эффективность (объемный к.п.д.), равную 80 %. Это означает, что двигатель втягивает приблизительно 80 % его рабочего объема. Оптимизация формы каналов и увеличение размеров портов улучшает объемный к.п.д. Воздух все еще имеет затруднения при достижении цилиндра. Пока двигатель для подачи воздуха через систему впуска использует атмосферное давление, двигатель не вырабатывает максимальную мощность, на которую он способен.

Без внешней помощи двигатель получает только частичный воздушно-топливный заряд. Нагнетание воздуха в цилиндры может увеличивать воздушно-топливный заряд. Это нагнетание большего количества воздуха в цилиндры позволяет двигателю заполнять свои цилиндры в объеме, который соответствует или превышает объемную эффективность, равную 100 %. Этот процесс нагнетания большего количества воздуха в цилиндры двигателя называется принудительным наддувом воздуха. Имеются два различных метода, используемые для нагнетания воздуха в двигатель: применение турбокомпрессора (использование энергии отработавших газов) и супернаддув (привод от коленчатого вала).

Турбонаддув

Наиболее распространенный тип воздушного насоса или компрессора - это турбокомпрессор. Турбокомпрессор использует отработавшие газы для приведения в движение рабочего колеса турбины, установленного на вале и связанного с колесом компрессора. Поток отработавших газов приводит в движение рабочее колесо турбины, которое, в свою очередь, активизирует колесо компрессора, расположенное во впускном трубопроводе. Колесо компрессора сжимает воздух и нагнетает его в двигатель под давлением приблизительно 9 psi. Чтобы не допустить слишком высокого подъема давления в турбокомпрессоре и повреждения двигателя, используется клапан регулировки давления, называемый клапаном обхода турбины. Клапан обхода турбины открывается при определенном заданном давлении.

Большой блок турбокомпрессора генерирует больший крутящий момент, но более медленно реагирует при низкой частоте вращения коленчатого вала двигателя. Меньший блок турбокомпрессора имеет меньшее рабочее колесо турбины, которое проще приводится в движение. Некоторые изготовители автомобилей начали использовать более малые блоки турбокомпрессоров, которые начинают наддув при низкой частоте вращения коленчатого вала двигателя и обеспечивают полную эффективность в процессе "нормального движения". Эти малые блоки турбокомпрессора часто называются турбокомпрессорами малого давления.

Т.к. турбокомпрессор приводится в движение потоком отработавших газов, он не потребляет мощность двигателя. В некоторых двигателях с турбонаддувом прежде, чем турбокомпрессор начнет подавать большое количество воздуха в двигатель, имеется короткий интервал времени. Этот короткий интервал времени называется запаздыванием турбонаддува. В течение этого периода запаздывания турбонаддува двигатель не получает дополнительной мощности, которую турбокомпрессор обеспечивает при более высокой частоте вращения коленчатого вала двигателя. В некоторых турбокомпрессорах используются конструкция с регулируемым впуском. Эта конструкция помогает турбокомпрессору достигать оптимальной частоты вращения при более низком ее значении, что увеличивает мощность двигателя при низкой частоте вращения коленчатого вала и уменьшает запаздывание турбонаддува.

Супернаддув

Компрессор супернаддува - это тип воздушного насоса или компрессора. Компрессор супернаддува приводится в движение не отработавшими газами. Источником энергии для компрессора супернаддува является сам двигатель. Коленчатый вал приводит компрессор супернаддува в движение посредством ременной, зубчатой или цепной передачи. Для двигателей с супернаддувом типично давление во впускном коллекторе до 13 psi.

Как и в турбокомпрессоре, количество мощности, требуемой для приведения в движение компрессора супернаддува, зависит от частоты вращения коленчатого вала двигателя. В отличие от некоторых двигателей с турбонаддувом, при ускорении компрессор супернаддува немедленно получает дополнительную мощность от двигателя. Хотя для приведения в движение компрессора супернаддува требуется мощность двигателя, компрессор этого типа в ответ помогает производить еще большую мощность. Имеются различные типы компрессоров супернаддува. Независимо от того, как сконструирован компрессор супернаддува, его главная задача -подавать большее количество воздуха в цилиндры и помогать двигателю вырабатывать больше мощности.

автозапчасти в москве

Комментарии

Пока нет комментариев

Написать комментарий